©
 VISUAL PHYSICS
 SHORT NOTES

C H A P T E R
Motion in 1-Dimension

Motion in 1-D
Distance \& Displacement

while molting the length of actual path covered is 'DIS TANCE'
\rightarrow The shortest distance between initial and final position is "DISPLACEMENT". of observation

Distance \rightarrow Scalar \rightarrow No direction
Displacement \rightarrow vector \rightarrow direction for motion in one direction it we take say $+x$ direction as + direction, so negative. x-direction \rightarrow-vie.

$$
\text { - vet } 5 \text { displacement } \longrightarrow+r e 5 \text { dis placement }
$$

Speed \& Velocity $($ in $1-\Delta)$

$$
\text { Average speed }=\frac{\text { Total distance covered }}{\text { Time required to cover that }} \text { distance }
$$

$$
\text { Average velocity }=\frac{\text { Total displacement }}{\text { Time clasped to cover that displace }}
$$

 position-time
graph
=instantaneo
velocity
\Rightarrow Instantaneous speed: = magnitude of instantaneous velocity

$$
\text { Instantaneous velocity }=\frac{d x}{d t} \text { position }
$$

\Rightarrow We always consider one direction as positive and other negative and positive negative sign gives direction of velocity.

Instantaneous
Acceleration:

direction of a and v can be different

so, \vec{a} is opposite to \vec{V}
slope of position -tine \rightarrow Velocity (instantaneous)
slope at velocity -time graph \rightarrow Instantaneous acceleration
average acceleration $=\frac{\text { change in } \vec{v} \text { in given time }}{\text { time clasped. }}$
\Rightarrow Uniform speed \rightarrow speed of object remains constant throughout the motion
\Rightarrow Uniform velocity \rightarrow velocity of object remains motion constant throughout

uniformspeed
uniform velocity motion motion, in general

Graph a its cut comes
(1) Slope of pesition-time graph \rightarrow velocity
(2) Slope of velouty-time graph \rightarrow acceleration
(3) Area under acreteration-timegraph 7

(4) Area under velocity - time graph displacement

Inst. acceleration at point A

\rightarrow We will consider motion with uniform-acceleration
acceleration will remain. Constant
$\rightarrow A s$,

$$
\begin{aligned}
& a=\frac{d v}{d t} \\
& a d t=d v \\
& a \int_{0} d t=\int_{u} d v \\
& a t=v-u \\
& \Rightarrow \quad v=u+a t \rightarrow \text { time clasped } \\
& \text { final } \begin{array}{l}
\text { velocity } \quad \text { initial }
\end{array} \quad \text { velocity }
\end{aligned}
$$

$$
\begin{aligned}
a & =\frac{d v}{d t} \\
a & =\frac{d v}{d t} \frac{d x}{d x} \\
& =\frac{d v}{d x}\left(\frac{d x}{d t}\right) \longrightarrow \text { velocity } \\
a & =v \frac{d v}{d x}
\end{aligned}
$$

$$
\begin{aligned}
& \int_{0}^{s} a d x=\int_{u}^{v} v d v \\
& a s=\frac{v^{2}-u^{2}}{2} \\
& \Rightarrow v^{2}=u^{2}+2 a s z \rightarrow \text { displacement }
\end{aligned}
$$

\rightarrow as

$$
\begin{aligned}
& v=\frac{d x}{d t} \\
& (u+a t)=\frac{d x}{d t} \\
& \int_{0}^{t}(u+a t) d t=\int_{0}^{s} d x \\
& \Rightarrow s=u t+\frac{1}{2} \cdot u t^{2}
\end{aligned}
$$

Three equations:

1. $V=u+a t$
2. $\quad V^{2}=u^{2}+2 a s$
3. $s=u t+\frac{1}{2} a t^{2}$

Acceleration due to gravity

$$
\begin{aligned}
g \rightarrow & 9.8 \mathrm{~m} / \mathrm{s}^{2} \\
& \longrightarrow 10 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

$\stackrel{\downarrow}{ }$ Normally.
\rightarrow direction \rightarrow always downwards towards earth if ae take direction

$$
\uparrow+v e
$$

than $a=-g$
if we take direction

$$
a=+g
$$

Using scalar method:

from $A \rightarrow B$.
$a=-g$ as opposed

$$
S=H
$$

from $B \rightarrow C$
$a=+g \longrightarrow \begin{aligned} & \text { gravity } \\ & \text { support motion }\end{aligned}$
$s=H+H 1$

$$
S=H+H_{1}
$$

Using vector
upward direction \rightarrow +ie
dowand direction \rightarrow-ve

$$
\text { acceleration }=(-g)
$$ down direction

$$
S=-H
$$

object ultimately goes from $A \rightarrow C$ displacement $\rightarrow-H$

